A178254 Number of permutations of the proper divisors of n such that no adjacent elements have a common divisor greater than 1.
1, 1, 1, 2, 1, 6, 1, 2, 2, 6, 1, 4, 1, 6, 6, 0, 1, 4, 1, 4, 6, 6, 1, 0, 2, 6, 2, 4, 1, 36, 1, 0, 6, 6, 6, 0, 1, 6, 6, 0, 1, 36, 1, 4, 4, 6, 1, 0, 2, 4, 6, 4, 1, 0, 6, 0, 6, 6, 1, 0, 1, 6, 4, 0, 6, 36, 1, 4, 6, 36, 1, 0, 1, 6, 4, 4, 6, 36, 1, 0, 0, 6, 1, 0, 6, 6, 6, 0, 1, 0, 6, 4, 6, 6, 6, 0, 1, 4, 4, 0, 1, 36, 1
Offset: 1
Keywords
Examples
Proper divisors for n=21 are: 1, 3, and 7: a(39) = #{[1,3,7], [1,7,3], [3,1,7], [3,7,1], [7,1,3], [7,3,1]} = 6; proper divisors for n=12 are: 1, 2, 3, 4, and 6: a(12) = #{[2,3,4,1,6], [4,3,2,1,6], [6,1,2,3,4], [6,1,4,3,2]} = 4; proper divisors for n=42: 1, 2, 3, 6, 7, 14, and 21: a(42) = #{[2,21,1,6,7,3,14], [2,21,1,14,3,7,6], [3,14,1,6,7,2,21], [3,14,1,21,2,7,6], [6,1,14,3,7,2,21], [6,1,21,2,7,3,14], ...} = 36, see the appended file for the list of all permutations.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
- R. Zumkeller, Example: n=42
Crossrefs
Cf. A109810.
Comments