A178300 Triangle T(n,k) = binomial(n+k-1,n) read by rows, 1 <= k <= n.
1, 1, 3, 1, 4, 10, 1, 5, 15, 35, 1, 6, 21, 56, 126, 1, 7, 28, 84, 210, 462, 1, 8, 36, 120, 330, 792, 1716, 1, 9, 45, 165, 495, 1287, 3003, 6435, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078
Offset: 1
Examples
Triangle begins 1; 1, 3; 1, 4, 10; 1, 5, 15, 35; 1, 6, 21, 56, 126; 1, 7, 28, 84, 210, 462; 1, 8, 36, 120, 330, 792, 1716; T(3,3)=10 since there are 10 ways to put 3 identical balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012 For example, T(3,3)=10 since there are ten functions f:[2]->[4] that are nondecreasing, namely, <f(1),f(2)> = <1,1> or <1,2> or <1,3> or <1,4> or <2,2> or <2,3> or <2,4> or <3,3> or <3,4> or <4,4>. - _Dennis P. Walsh_, Apr 09 2016
Links
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
- Ch. Stover and E. W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Wikipedia, Symmetric Polynomials
Crossrefs
Programs
-
Magma
// As triangle [[Binomial(n+k-1,n): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 24 2016
-
Maple
seq(seq(binomial(n+k-1,n),k=1..n),n=1..15); # Dennis P. Walsh, Apr 11 2012
-
Mathematica
m[par_?PartitionQ, v_] := Block[{le = Length[par], it }, If[le > v, Return[0]]; it = Permutations[PadRight[par, v]]; Tr[ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ it, {1}]]]; Table[Tr[(m[#, k] & /@ Partitions[l]) /. Subscript[x, ] -> 1], {l, 11}, {k, l}](* _Wouter Meeussen, Mar 11 2012 *) Quiet[Needs["Combinatorica`"], All]; Grid[Table[Length[Combinatorica`Compositions[n, k]], {n, 10}, {k, n}]] (* L. Edson Jeffery, Jul 24 2014 *) t[n_, k_] := Binomial[n + k - 1, n]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 24 2014 *)
Comments