A275028
Squares whose digital rotation is also a square.
Original entry on oeis.org
1, 121, 196, 529, 625, 961, 6889, 10201, 69169, 1002001, 1022121, 1212201, 5221225, 100020001, 100220121, 109181601, 121022001, 522808225, 602555209, 10000200001, 10002200121, 10020210201, 10201202001, 12100220001, 62188888129, 1000002000001
Offset: 1
961 becomes 196 under such a rotation.
-
Select[Range[10^6]^2, If[Or[IntersectingQ[#, {3, 4, 7}], Last@# == 0], False, IntegerQ@ Sqrt@ FromDigits[Reverse@ # /. {6 -> 9, 9 -> 6}]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Nov 14 2016 *)
-
from itertools import count, islice
from sympy.ntheory.primetest import is_square
def A275028_gen(): # generator of terms
r, t = ''.maketrans('69','96'), set('0125689')
for l in count(1):
if l%10:
m = l**2
if set(s:=str(m)) <= t and is_square(int(s[::-1].translate(r))):
yield m
A275028_list = list(islice(A275028_gen(),10)) # Chai Wah Wu, Apr 09 2024
A370447
Palindromic prime numbers that consist only of the digits {0,1,6,8,9} and which remain palindromic primes when their digits are rotated by 180 degrees.
Original entry on oeis.org
11, 101, 181, 16661, 18181, 19991, 1008001, 1160611, 1180811, 1190911, 1688861, 1880881, 1881881, 1988891, 100111001, 100888001, 101616101, 101919101, 106111601, 106191601, 108101801, 109111901, 109161901, 110111011, 111010111, 111181111, 116010611, 116696611
Offset: 1
16661 becomes 19991 under such a rotation, and both are palindromic primes.
Subsequence of palindromes in
A007597.
-
rot(u)=my(v=[]);for(i=1,#u,my(x=u[i]);if(x==6,v=concat(9,v),x==9,v=concat(6,v),vecsearch([0,1,8],x)>0,v=concat(x,v)));v
is(x)=my(u=digits(x),su=Set(u));if(setintersect(su,Set([0,1,6,8,9]))!=su||!isprime(x)||Vecrev(u)!=u,return(0));my(y=fromdigits(rot(u)));return(isprime(y))
-
from sympy import isprime
from itertools import product, count, islice
def flip180(s): return s[::-1].translate({54:57, 57:54})
def agen(): # generator of terms
yield 11
for digits in count(3, 2):
for rest in product("01689", repeat=digits//2-1):
for mid in "01689":
s = "".join(("1",)+rest+(mid,)+rest[::-1]+("1",))
if isprime(t:=int(s)) and isprime(int(flip180(s))):
yield t
print(list(islice(agen(), 28))) # Michael S. Branicky, Feb 19 2024
Showing 1-2 of 2 results.
Comments