A178333 Characteristic function of mountain numbers.
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
Programs
-
Haskell
a178333 n = fromEnum $ n `mod` 10 == 1 && a000030 n == 1 && a196368 n == 1 && and down where down = dropWhile (== False) $ zipWith (<) (tail $ show n) (show n) a178333_list = map a178333 [0..] -- Reinhard Zumkeller, Oct 28 2001
-
Mathematica
a[n_] := Boole[ MatchQ[ IntegerDigits[n], {1, a___, b_, c___, 1} /; OrderedQ[{1, a, b}, Less] && OrderedQ[ {b, c, 1}, Greater]]]; a[1]=1; Table[a[n], {n, 0, 200}] (* Jean-François Alcover, Jun 13 2012 *)
Formula
a(n) = if n mod 10 = 1 then if n = 1 then 1 else g(n div 10, 1) else 0
with g(x, y) = if x mod 10 > y then g(x div 10, x mod 10) else if x mod 10 = y then 0 else h(x div 10, x mod 10)
and h(x, y) = if y = 1 then 0^x else if x mod 10 < y then h(x div 10, x mod 10) else 0.
Comments