A178340 Triangle T(n,m) read by rows: denominator of the coefficient [x^m] of the umbral inverse Bernoulli polynomial B^{-1}(n,x).
1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 1, 1, 1, 6, 1, 2, 3, 2, 1, 7, 1, 1, 1, 1, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 10, 1, 2, 1, 1, 5, 1, 1, 2, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 2, 3, 4, 1, 1, 1, 4, 3, 2, 1, 13
Offset: 0
Examples
The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 0: 1 1: 2 1 2: 3 1 1 3: 4 1 2 1 4: 5 1 1 1 1 5: 6 1 2 3 2 1 6: 7 1 1 1 1 1 1 7: 8 1 2 1 4 1 2 1 8: 9 1 1 3 1 1 3 1 1 9: 10 1 2 1 1 5 1 1 2 1 10: 11 1 1 1 1 1 1 1 1 1 1 11: 12 1 2 3 4 1 1 1 4 3 2 1 12: 13 1 1 1 1 1 1 1 1 1 1 1 1 13: 14 1 2 1 2 1 2 7 2 1 2 1 2 1 14: 15 1 1 3 1 5 3 1 1 3 5 1 3 1 1 ... reformatted. - _Wolfdieter Lang_, Aug 25 2015 ------------------------------------------------- The rational triangle TinvB(n,m):= A178252(n,m) / T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 1/2 1 2: 1/3 1 1 3 1/4 1 3/2 1 4: 1/5 1 2 2 1 5: 1/6 1 5/2 10/3 5/2 1 6: 1/7 1 3 5 5 3 1 7: 1/8 1 7/2 7 35/4 7 7/2 1 8: 1/9 1 4 28/3 14 14 28/3 4 1 9: 1/10 1 9/2 12 21 126/5 21 12 9/2 1 10: 1/11 1 5 15 30 42 42 30 15 5 1 ... - _Wolfdieter Lang_, Aug 25 2015 Recurrence from the Sheffer a-sequence: Tinv(3,2) = (3/2)*TinvB(2,1) = (3/2)*1 = 3/2. From the z-sequence: Tinv(3,0) = 3*Sum_{j=0..2} z_j*TinvB(2,j) = 3*((1/2)*(1/3) -(1/12)*1 + 0*1) = 3*(1/6 - 1/12) = 1/4. - _Wolfdieter Lang_, Aug 25 2015
Crossrefs
Cf. A178252.
Programs
-
Mathematica
max = 13; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes]; Table[ Take[inv[[n]], n], {n, 1, max}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
Formula
T(n,0) = n+1.
Recurrence for the rational triangle
TinvB(n,m):= A178252(n,m) / T(n,m) from the Sheffer a-sequence, which is 1, (repeat 0), see the comment under A178252: TinvB(n,m) = (n/m)*TinvB(n-1,m-1), for n >= m >= 1. From the z-sequence: TinvB(n,0) = n*Sum_{j=0..n-1} z_j * TinvB(n-1,j), n >= 1, TinvB(0,0) = 1. - Wolfdieter Lang, Aug 25 2015
Comments