A178357 Numbers n such that d(1)^1 + d(2)^2 +...+ d(p)^p and d(1)^p + d(2)^p-1 +...+ d(p)^1 are prime numbers, where d(i), i=1..p, are the digits of n.
2, 3, 5, 7, 11, 12, 14, 16, 21, 23, 29, 32, 34, 38, 41, 43, 47, 56, 61, 65, 74, 83, 89, 92, 98, 101, 110, 111, 113, 115, 120, 122, 131, 133, 137, 139, 140, 146, 153, 155, 160, 164, 182, 186, 188, 191, 203, 205, 212, 214, 221, 225, 227, 230, 232, 236, 272, 281, 287, 290, 302, 304, 311, 313, 319, 320, 326, 331
Offset: 1
Examples
1583 is in the sequence because : 1 + 5^2 + 8^3 + 3^4 = 619 and 1^4 + 5^3 + 8^2 + 3^1 = 193 are prime numbers.
Programs
-
Maple
with(numtheory):for n from 1 to 1000 do:l:=length(n):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u^(l-m+1):s2:=s2+u^m:od: if type(s1,prime)=true and type(s2,prime)=true then printf(`%d, `,n):else fi:od:
-
Mathematica
okQ[n_] := Module[{d=IntegerDigits[n], r}, r=Length[d]; PrimeQ[Total[d^Range[r]]] && PrimeQ[Total[d^Range[r, 1, -1]]]]; Select[Range[1000], okQ]