cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A178474 Triangle T(n,m) read by rows: the denominator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0<=m<=n.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 0

Views

Author

Paul Curtz, May 28 2010

Keywords

Comments

As commented in A178395, the triangle of fractions of coefficients of the inverse Euler polynomials starts in row n=0 with column 0<=m<=n as:
1;
1/2,1;
1/2,1,1;
1/2,3/2,3/2,1;
1/2,2,3,2,1;
1/2,5/2,5,5,5/2,1;
1/2,3,15/2,10,15/2,3,1;
1/2,7/2,21/2,35/2,35/2,21/2,7/2,1;
1/2,4,14,28,35,28,14,4,1;
1/2,9/2,18,42,63,63,42,18,9/2,1;
1/2,5,45/2,60,105,126,105,60,45/2,5,1;
Partial row sums (skipping the left column) in this triangle are sum_{m>=1} [x^m] E^{-1}(n,x) = 2^(n-1).
T(n,m) is the denominator of the fraction in row n and column m.

Examples

			1;
2,1;
2,1,1;
2,2,2,1;
2,1,1,1,1;
2,2,1,1,2,1;
2,1,2,1,2,1,1;
2,2,2,2,2,2,2,1;
2,1,1,1,1,1,1,1,1;
2,2,1,1,1,1,1,1,2,1;
2,1,2,1,1,1,1,1,2,1,1;
2,2,2,2,1,1,1,1,2,2,2,1;
2,1,1,1,2,1,1,1,2,1,1,1,1;
2,2,1,1,2,2,1,1,2,2,1,1,2,1;
2,1,2,1,2,1,2,1,2,1,2,1,2,1,1;
		

Crossrefs

Cf. A178395 (numerators)

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 15;
    R = RiordanArray[(1 + E^#)/2&, #&, rows, True];
    R // Flatten // Denominator (* Jean-François Alcover, Jul 20 2019 *)
Showing 1-1 of 1 results.