A178440 Convolution square of A058187, the tetrahedral series with repeats.
1, 2, 9, 16, 44, 72, 156, 240, 450, 660, 1122, 1584, 2508, 3432, 5148, 6864, 9867, 12870, 17875, 22880, 30888, 38896, 51272, 63648, 82212, 100776, 127908, 155040, 193800, 232560, 286824, 341088, 415701, 490314, 591261, 692208, 826804, 961400, 1138500, 1315600
Offset: 0
Examples
Antidiagonal sums of terms in the array: 1,.. 1,. 4,. 4,. 10, 10,... 1,.. 1,. 4,. 4,. 10,........ 4,.. 4,.16,.16,............. 4,.. 4,.16,................. 10,.10,..................... 10,......................... Example: a(4) = 44 = (10 + 4 + 16 + 4 + 10).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2, 5, -12, -9, 30, 5, -40, 5, 30, -9, -12, 5, 2, -1).
Crossrefs
Cf. A058187.
Programs
-
Mathematica
LinearRecurrence[{2,5,-12,-9,30,5,-40,5,30,-9,-12,5,2,-1},{1,2,9,16,44,72,156,240,450,660,1122,1584,2508,3432},40] (* Harvey P. Dale, Apr 17 2020 *)
Formula
Square (1 + x + 4x^2 + 4x^3 + 10x^4 + ...) = (1 + 2x + 9x^2 + ...).
G.f.: 1 / ( (1+x)^6*(x-1)^8 ). - R. J. Mathar, Jul 21 2015
Extensions
Corrected by R. J. Mathar, Jul 21 2015