A178446 Number of perfect matchings in the n X n X n triangular grid, reduced by the spire vertex if n mod 4 equals 1 or 2.
1, 1, 1, 2, 6, 28, 200, 2196, 37004, 957304, 38016960, 2317631400, 216893681800, 31159166587056, 6871649018572800, 2326335506123418128, 1208982377794384163088, 964503557426086478029152, 1181201363574177619007442944, 2220650888749669503773432361504, 6408743336016148761893699822360672
Offset: 0
Keywords
Examples
4 example graphs: o / \ o o---o / \ / \ / \ ( ) o---o o---o---o / \ / \ / \ / \ / \ ( ) o---o o---o---o o---o---o---o n: 1 2 3 4 Vertices: 0 2 6 10 Edges: 0 1 9 18 Matchings: 1 1 2 6
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Eric Weisstein's World of Mathematics, Perfect Matching
- Wikipedia, Triangular grid graph
Programs
-
Maple
with(LinearAlgebra): a:= proc(n) option remember; local i, j, h0, h1, M, s, t; if n<2 then 1 else s:= `if`(member(irem(n, 4), [1, 2]), 1, 0); M:= Matrix((n+1)*n/2 -s, shape=skewsymmetric); if s=1 then M[1,2]:=1 fi; for j from 1+s to n-1 do h0:= j*(j-1)/2 +1-s; h1:= h0+j; t:= 1; for i from 1 to j do M[h1, h1+1]:= 1; M[h1, h0]:= t; h1:= h1+1; M[h1, h0]:= t; h0:= h0+1; t:= -t od od; sqrt(Determinant(M)) fi end: seq(a(n), n=0..15);
-
Mathematica
a[n_] := a[n] = Module[{i, j, h0, h1, M, s, t}, If[n<2, 1, s = If[1 <= Mod[n, 4] <= 2, 1, 0]; M = Array[0&, {(n+1)n/2 - s, (n+1)n/2 - s}]; If[s == 1, M[[1, 2]] = 1]; For[j = 1+s, j <= n-1, j++, h0 = j(j-1)/2 + 1 - s; h1 = h0+j; t = 1; For[i = 1, i <= j, i++, M[[h1, h1+1]] = 1; M[[h1, h0]] = t; h1 = h1+1; M[[h1, h0]] = t; h0 = h0+1; t = -t]]; Sqrt[Det[M-Transpose[M]]]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 23 2022, after Alois P. Heinz *)
Comments