A178472 Number of compositions (ordered partitions) of n where the gcd of the part sizes is not 1.
0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 1, 32768, 1027, 65537, 79, 133088, 1, 262145, 4099, 524408, 1, 1056731, 1, 2097158, 16636, 4194305, 1, 8421248, 64, 16777712, 65539
Offset: 1
Keywords
Examples
For n=6, we have 5 compositions: <6>, <4,2>, <2,4>, <2,2,2>, and <3,3>. From _Gus Wiseman_, Nov 10 2019: (Start) The a(2) = 1 through a(9) = 4 non-relatively prime compositions: (2) (3) (4) (5) (6) (7) (8) (9) (2,2) (2,4) (2,6) (3,6) (3,3) (4,4) (6,3) (4,2) (6,2) (3,3,3) (2,2,2) (2,2,4) (2,4,2) (4,2,2) (2,2,2,2) The a(2) = 1 through a(9) = 4 periodic compositions: 11 111 22 11111 33 1111111 44 333 1111 222 1313 121212 1212 2222 212121 2121 3131 111111111 111111 112112 121121 211211 11111111 The a(2) = 1 through a(9) = 4 compositions with non-relatively prime run-lengths: 11 111 22 11111 33 1111111 44 333 1111 222 1133 111222 1122 2222 222111 2211 3311 111111111 111111 111122 112211 221111 11111111 (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014. See Table 2.
Crossrefs
Programs
-
Maple
A178472 := n -> (2^n - add(mobius(n/d)*2^d, d in divisors(n)))/2: seq(A178472(n), n=1..51); # Peter Luschny, Jan 21 2018
-
Mathematica
Table[2^(n - 1) - DivisorSum[n, MoebiusMu[n/#]*2^(# - 1) &], {n, 51}] (* Michael De Vlieger, Jan 20 2018 *)
-
PARI
vector(60,n,2^(n-1)-sumdiv(n,d,2^(d-1)*moebius(n/d)))
-
Python
from sympy import mobius, divisors def A178472(n): return -sum(mobius(n//d)<
Chai Wah Wu, Sep 21 2024
Formula
a(n) = Sum_{d|n & d
a(n) = 2^(n-1) - A000740(n).
a(n) = A152061(n)/2. - George Beck, Jan 20 2018
a(p) = 1 for p prime. - Chai Wah Wu, Sep 21 2024
Extensions
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012
Comments