A178491 Primes of the form 2*p^k-1, where p is prime and k > 1.
7, 17, 31, 53, 97, 127, 241, 337, 577, 1249, 3361, 3697, 4373, 4801, 6961, 8191, 10657, 13121, 23761, 25537, 31249, 32257, 33613, 37537, 49297, 59581, 64081, 65521, 77617, 79201, 89041, 126001, 131071, 138337, 153457, 159013, 171697, 193441
Offset: 1
Keywords
Examples
a(1) = 7 = 2*2^2-1 and a(2) = 17 = 2*3^2-1 are also in A092057, and a(3) = 31 = 2*2^4-1 = A000668(3), but a(4) = 53 = 2*3^3-1 is in neither of these subsequences.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^6: # for terms <= N P:= select(isprime,[2,seq(i,i=3..floor(sqrt((N+1)/2)),2)]): R:= NULL: for p in P do for k from 2 do v:= 2*p^k-1; if v > N then break fi; if isprime(v) then R:= R,v fi; od od: sort([R]); # Robert Israel, Feb 20 2024
-
Mathematica
Select[Prime[Range[20000]],!PrimeQ[(#+1)/2]&&Length[FactorInteger[(#+1)/2]]==1&]
-
PARI
is_A178491(n) = isprime(n) & ispower((n+1)/2,,&n) & isprime(n)
Comments