A178514 Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having genus k (see first comment for definition of genus).
0, 1, 0, 1, 1, 0, 3, 6, 0, 0, 6, 30, 8, 0, 0, 15, 130, 120, 0, 0, 0, 36, 525, 1113, 180, 0, 0, 0, 91, 2016, 8078, 4648, 0, 0, 0, 0, 232, 7476, 50316, 67408, 8064, 0, 0, 0, 0, 603, 27000, 281862, 719640, 305856, 0, 0, 0, 0, 0, 1585, 95535, 1459920, 6298930, 6223800, 604800, 0
Offset: 1
Examples
T(3,1)=1 because 312 is the only derangement of {1,2,3} with genus 1. Indeed, we have p=312=(132), cp'=231*231=312=(132) and so g(p) = (1/2)*(3+1-1-1) = 1, while for the other derangement of {1,2,3}, q=231=(123), we have cq'=231*312=123=(1)(2)(3) and so g(q) = (1/2)*(3+1-1-3) = 0. Triangle starts: [ 1] 0, [ 2] 1, 0, [ 3] 1, 1, 0, [ 4] 3, 6, 0, 0, [ 5] 6, 30, 8, 0, 0, [ 6] 15, 130, 120, 0, 0, 0, [ 7] 36, 525, 1113, 180, 0, 0, 0, [ 8] 91, 2016, 8078, 4648, 0, 0, 0, 0, [ 9] 232, 7476, 50316, 67408, 8064, 0, 0, 0, 0, [10] 603, 27000, 281862, 719640, 305856, 0, 0, 0, 0, 0, [11] 1585, 95535, 1459920, 6298930, 6223800, 604800, 0, 0, 0, 0, 0, [12] 4213, 332530, 7117902, 47851540, 90052336, 30856320, 0, 0, 0, 0, 0, 0, ...
Links
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Programs
-
Maple
n := 7: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: nrcyc := proc (p) local pc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: DER := {}: for i to factorial(n) do if nrfp(P[i]) = 0 then DER := `union`(DER, {P[i]}) else end if end do: f[n] := sort(add(t^gen(DER[j]), j = 1 .. nops(DER))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries of the specified row n
Extensions
Terms beyond row 7 from Joerg Arndt, Nov 01 2012
Comments