A178516 Triangle read by rows: T(n,k) is the number of up-down permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
1, 1, 0, 2, 0, 0, 2, 3, 0, 0, 6, 10, 0, 0, 0, 6, 38, 17, 0, 0, 0, 22, 142, 104, 4, 0, 0, 0, 22, 351, 778, 234, 0, 0, 0, 0, 90, 1419, 4086, 2235, 106, 0, 0, 0, 0, 90, 2856, 17402, 24357, 5816, 0, 0, 0, 0, 0, 394, 12208, 87434, 171305, 78705, 3746, 0, 0, 0, 0, 0, 394, 21676, 278062, 1053425, 1120648, 228560, 0
Offset: 1
Examples
T(4,0)=2. From the fact that a permutation p of {1,2,...,n} has genus 0 if and only if the cycle decomposition of p gives a noncrossing partition of {1,2,...,n} and each cycle of p is increasing (see Lemma 2.1 of the Dulucq-Simion reference), it follows that the up-down permutations 2314 = (123)(4) and 1324 = (1)(23)(4) have genus 0, while 2413 = (1243), 3412 = (13)(24), and 1423 = (1)(243) do not. Triangle starts: [ 1] 1, [ 2] 1, 0, [ 3] 2, 0, 0, [ 4] 2, 3, 0, 0, [ 5] 6, 10, 0, 0, 0, [ 6] 6, 38, 17, 0, 0, 0, [ 7] 22, 142, 104, 4, 0, 0, 0, [ 8] 22, 351, 778, 234, 0, 0, 0, 0, [ 9] 90, 1419, 4086, 2235, 106, 0, 0, 0, 0, [10] 90, 2856, 17402, 24357, 5816, 0, 0, 0, 0, 0, [11] 394, 12208, 87434, 171305, 78705, 3746, 0, 0, 0, 0, 0, [12] 394, 21676, 278062, 1053425, 1120648, 228560, 0, 0, 0, 0, 0, 0, ...
Links
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Programs
-
Maple
n := 7: with(combinat): descents := proc (p) local A, i: A := {}: for i to nops(p)-1 do if p[i+1] < p[i] then A := `union`(A, {i}) else end if end do: A end proc; UD := proc (n) local ud, P, j: ud := {}: P := permute(n): for j to factorial(n) do if descents(P[j]) = {seq(2*k, k = 1 .. ceil((1/2)*n)-1)} then ud := `union`(ud, {P[j]}) else end if end do: ud end proc; inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(UD(n)[j]), j = 1 .. nops(UD(n)))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n
Extensions
Terms beyond row 7 from Joerg Arndt, Nov 01 2012
Comments