A192304 0-sequence of reduction of (2n-1) by x^2 -> x+1.
1, 1, 6, 13, 31, 64, 129, 249, 470, 869, 1583, 2848, 5073, 8961, 15718, 27405, 47535, 82080, 141169, 241945, 413366, 704261, 1196831, 2029248, 3433441, 5798209, 9774534, 16451149, 27646975, 46397824
Offset: 1
Programs
-
Mathematica
c[n_] := 2 n - 1; (* odd numbers, A005408 *) Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[ Last[Most[ FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192304 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A178525 *) (* Peter J. C. Moses, Jun 20 2011 *)
Formula
Empirical g.f.: x*(1-2*x+4*x^2-x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). - Colin Barker, Feb 08 2012
Comments