cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178534 Triangle T(n,k) read by rows. T(n,1) = A000045(n+1), k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 8, 3, 1, 1, 1, 13, 5, 3, 1, 1, 1, 21, 8, 4, 2, 1, 1, 1, 34, 13, 6, 4, 2, 1, 1, 1, 55, 21, 11, 6, 3, 2, 1, 1, 1, 89, 34, 17, 9, 6, 3, 2, 1, 1, 1, 144, 55, 27, 15, 9, 5, 3, 2, 1, 1, 1, 233, 89, 45, 25, 14, 9, 5, 3, 2, 1, 1, 1, 377, 144, 72, 40, 23, 14, 8, 5, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, May 29 2010

Keywords

Examples

			Table begins:
   1;
   2,  1;
   3,  1,  1;
   5,  2,  1,  1;
   8,  3,  1,  1,  1;
  13,  5,  3,  1,  1,  1;
  21,  8,  4,  2,  1,  1,  1;
  34, 13,  6,  4,  2,  1,  1,  1;
  55, 21, 11,  6,  3,  2,  1,  1,  1;
  89, 34, 17,  9,  6,  3,  2,  1,  1,  1;
		

Crossrefs

Cf. 1st column=A000045(n+1), 2nd=A000045, 3rd=A093040, 4th=A006498. Matrix inverse of A178535.

Programs

  • Maple
    A178534 := proc(n, k)
        option remember;
        if k= 1 then
            combinat[fibonacci](n+1) ;
        elif k > n then
            0 ;
        else
            add(procname(n-i, k-1), i=1..k-1)-add(procname(n-i, k), i=1..k-1) ;
        end if;
    end proc:
    seq(seq(A178534(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Oct 28 2010
  • Mathematica
    T[n_, 1] := Fibonacci[n+1];
    T[n_, k_] := T[n, k] = If[k > n, 0, Sum[T[n-i, k-1], {i, 1, k-1}] - Sum[T[n-i, k], {i, 1, k-1}]];
    Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2024 *)
  • PARI
    T(n,k)=(n % k==0) + sum(j=1,n\k,fibonacci(n-j*k)) \\ Andrew Howroyd, Feb 23 2024
  • Python
    from sympy.core.cache import cacheit
    from sympy import fibonacci
    @cacheit
    def A(n, k): return fibonacci(n + 1) if k==1 else 0 if k>n else sum([A(n - i, k - 1) for i in range(1, k)]) - sum([A(n - i, k) for i in range(1, k)])
    for n in range(1, 13): print([A(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Sep 15 2017
    

Formula

T(n,1) = A000045(n+1), k>1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1) - Sum_{i=1..k-1} T(n-i,k).
T(n,k) = A129713*A051731. - Mats Granvik, Oct 22 2010
From R. J. Mathar, Sep 16 2017: (Start)
G.f. 3rd column: x^3*(1+x)/((1-x-x^2)*(1+x+x^2)).
G.f. 4th column: x^4/((1-x-x^2)*(1+x^2)) =x^4*(1+x)/((1-x-x^2)*(1+x+x^2+x^3)).
G.f. 5th column: x^5*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4)).
G.f. 6th column: x^6/((1-x-x^2)*(1+x+x^2)*(1-x+x^2)) = x^6*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5)).
G.f. 7th column: x^7*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5+x^6)).
G.f. 8th column: x^8/((1-x-x^2)*(1+x^2)*(1+x^4)) = x^8*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5+x^6+x^7)).
Conjecture (by extrapolating): G.f. k-th column: x^k*(1-x^2)/((1-x-x^2)*(1-x^k)).
G.f.: (1-x^2)/(1-x-x^2)*Sum_{i>=1} (x*y)^i/(1-x^i) = (1-x^2)/(1-x-x^2)*A051731(x,y). (End)
T(n,k) = A051731(n,k) + Sum_{j=1..floor(n/k)} Fibonacci(n-j*k). - Andrew Howroyd, Feb 23 2024