A178535 Matrix inverse of A178534.
1, -2, 1, -1, -1, 1, 0, -1, -1, 1, -1, -1, 0, -1, 1, 1, 0, -2, 0, -1, 1, -1, -1, 0, -1, 0, -1, 1, 0, 0, 0, -1, -1, 0, -1, 1, 0, 0, -1, -1, 0, -1, 0, -1, 1, 1, 0, -1, 1, -2, 0, -1, 0, -1, 1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, 0, 1, 1, -1, 0, -1, -1, 0, -1, 0, -1, 1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1
Offset: 1
Examples
Table begins: 1 -2 1 -1 -1 1 0 -1 -1 1 -1 -1 0 -1 1 1 0 -2 0 -1 1 -1 -1 0 -1 0 -1 1 0 0 0 -1 -1 0 -1 1 0 0 -1 -1 0 -1 0 -1 1 1 0 -1 1 -2 0 -1 0 -1 1 -1 -1 0 -1 0 -1 0 -1 0 -1 1
Crossrefs
Cf. First column is A178536.
Programs
-
Maple
A178535 := proc(n, l) option remember; a := 0 ; if n = l then a := 1 ; end if; for k from l to n-1 do a := a-A178534(n, k)*procname(k, l) ; end do: a/A178534(n, n) ; end proc: seq(seq(A178535(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Oct 28 2010
-
Mathematica
nmax = 13; (* T is A178534 *) T[n_, 1] := Fibonacci[n+1]; T[n_, k_] := T[n, k] = If[k > n, 0, Sum[T[n-i, k-1], {i, 1, k-1}] - Sum[T[n-i, k], {i, 1, k-1}]]; A178535 = Inverse[Array[T, {nmax, nmax}]]; Table[A178535[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2024 *)
Comments