cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178545 Primes p such that q = p^2 + p + 1 is an emirp.

Original entry on oeis.org

3, 5, 41, 59, 839, 857, 1811, 1931, 3011, 3221, 3407, 3671, 8387, 8543, 8627, 9719, 9743, 9803, 10781, 11549, 12647, 13469, 13487, 13499, 13613, 13931, 14087, 17477, 17573, 17837, 18089, 18269, 19319, 19403, 19661, 19991, 27191, 27947, 31223, 33311, 34313
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 29 2010

Keywords

Comments

It is conjectured (but still an open problem) that there exist infinitely many primes of the form n^2 + n + 1 = ((2*n+1)^2 + 3)/4.
Landau's 4th problem from (1912, 5th Congress of Mathematicians in Cambridge) conjectures that there are infinitely many primes of the form n^2 + 1 (also Euler 1760; Mirsky 1949).
Hardy and Littlewood proposed a conjecture about the asymptotic number of primes of the form n^2 + 1.
An emirp ("prime" spelled backwards) is a prime whose reversal is a different prime, the reversal of q is denoted by R(q).
It is conjectured but also unproved that there are infinitely many emirps (see A048054).
For p > 3 necessarily p of the form 6*k + 5 as (6*k+1)^2 + (6*k+1) + 1 a multiple of 3.

Examples

			3^2 + 3 + 1 = 13 = prime(6), R(13) = prime(11), 3 is first term.
5^2 + 5 + 1 = 31 = prime(11), R(31) = prime(6), 5 is 2nd term.
q = 1811^2 + 1811 + 1 = 3281533 = prime(235691), R(q) = prime(240351), first case that p = 1811 = prime(280) = emirp(87) is itself an emirp.
		

References

  • M. Gardner: Die magischen Zahlen des Dr. Matrix, Krueger Verlag, Frankfurt am Main, 1987
  • R. Guy: Unsolved Problems in Number Theory,3rd edition, Springer, New York, 2004
  • G. H. Hardy, E. M. Wright: Einfuehrung in die Zahlentheorie, R. Oldenburg, Muenchen, 1958

Crossrefs

Programs

  • Maple
    filter:= proc(p) local q,qr;
       if not isprime(p) then return false fi;
       q:= p^2+p+1;
       if not isprime(q) then return false fi;
       qr:= revdigs(q);
       qr <> q and isprime(qr);
    end proc:
    select(filter, [3,seq(i,i=5..50000,6)]); # Robert Israel, Dec 04 2016
  • Mathematica
    EmirpQ[n_] := If[ PrimeQ@n, Block[{id = IntegerDigits@n}, rid = Reverse@ id; rid != id && PrimeQ@ FromDigits@ rid]]; Select[ Prime@ Range@ 3700, EmirpQ[ #^2 + # + 1] &] (* Robert G. Wilson v, Jul 26 2010 *)
    p2emrpQ[p_]:=With[{q=p^2+p+1},!PalindromeQ[q]&&AllTrue[{q,IntegerReverse[q]},PrimeQ]]; Select[Prime[Range[3700]],p2emrpQ] (* Harvey P. Dale, Mar 10 2025 *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2010