A178570 Numbers k such that prime(k+1) == 1 (mod (prime(k+2) - prime(k))).
2, 3, 5, 7, 13, 20, 24, 26, 28, 30, 31, 32, 36, 41, 43, 49, 52, 62, 64, 67, 69, 73, 77, 81, 83, 86, 87, 89, 103, 105, 109, 116, 121, 129, 135, 142, 144, 148, 152, 156, 158, 159, 163, 168, 171, 173, 182, 190, 192, 196, 206, 208, 212, 215, 217, 219, 223, 225, 231, 234, 236
Offset: 1
Keywords
Examples
2 is a term because prime(2+1) mod (prime(2+2) - prime(2)) = 5 mod 4 = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A067185.
Programs
-
Mathematica
fQ[n_] := Mod[Prime[n+1], Prime[n+2] - Prime[n]] == 1; Select[ Range@ 250, fQ]
-
PARI
isok(n) = prime(n+1) % (prime(n+2) - prime(n)) == 1; \\ Michel Marcus, Jan 31 2019