A178576 Primes that are the sum of two Fibonacci numbers.
2, 3, 5, 7, 11, 13, 23, 29, 37, 47, 89, 97, 149, 157, 199, 233, 241, 379, 521, 613, 631, 1021, 1597, 1741, 2207, 3571, 9349, 10949, 11933, 17713, 28657, 46381, 46457, 46601, 50549, 75169, 196439, 203183, 214129, 514229, 560597, 832129, 2178343
Offset: 1
Keywords
Examples
Prime 613 can be expressed as 3+610 = Fibonacci(4)+Fibonacci(15), therefore 613 is in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..5624
Programs
-
Mathematica
f=Fibonacci[Range[33]]; Select[Union[Flatten[Outer[Plus, f, f]]], PrimeQ]
-
PARI
list(lim)={ my(v,u=List(),t); v=vector(log(lim*sqrt(5))\log((1+sqrt(5))/2)+1,n,fibonacci(n)); for(i=1,#v,for(j=i+1,#v, t = v[i] + v[j]; if(t > lim, break); if(ispseudoprime(t),listput(u, t)) )); vecsort(Vec(u),,8) }; \\ Charles R Greathouse IV, Jul 23 2012
Comments