A178613 The smaller member prime(i) of an emirp pair (prime(i),prime(j)), such that the digit sum of i equals the digit sum of j.
37, 359, 769, 1409, 7687, 10711, 10853, 11243, 11593, 13441, 13751, 14423, 14551, 14879, 15307, 15661, 16879, 17959, 30853, 31193, 33863, 34589, 37307, 37489, 38449, 73369, 74959, 75239, 78259, 78839, 79669, 90089, 92779, 100267, 101531
Offset: 1
Examples
37 = prime(12) and 73 = prime(21) are an emirp pair with equal digit sums of the indices 1+2 = 3 = 2+1, which puts 37 into the sequence. 359 = prime(72) and 953 = prime(162) are an emirp pair with digit sums 7+2 = 9 = 1+6+2, which puts 359 into the sequence. The 6th term is from the pair (10711 = prime(1306), 11701 = prime(1405)), see A033548 16th term: (17959 = prime(2059), 95971 = prime(9250)). 21st term: (34589 = prime(3694), 98543 = prime(9463)).
References
- W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, 13th edition, Dover Publications, 2010
- C. Mauduit, J. Rivat: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals of Mathematics, Vol. 171, No. 3, 1591-1646, 2010
- H Schubart: Einfuehrung in die klassische und moderne Zahlentheorie Vieweg, Braunschweig, 1974
Programs
-
Mathematica
f[n_] := Plus @@ IntegerDigits@ PrimePi@n; fQ[n_] := Block[{id = IntegerDigits@n}, rid = Reverse@ id; q = FromDigits@ rid; rid != id && PrimeQ@ FromDigits@ rid && n < q && f@n == f@q]; lst = {}; p = 13; While[p < 102148, If[ fQ@p, AppendTo[lst, p]]; p = NextPrime@p]; lst (* Robert G. Wilson v, Jul 31 2010 *)
Extensions
More terms from Robert G. Wilson v, Jul 31 2010
Comments