cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178618 Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.

Original entry on oeis.org

1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0

Views

Author

Roger L. Bagula, May 30 2010

Keywords

Comments

Every third row is symmetrical.
Row sums are 3^n.
2*k instead of 3*k in the binomial() gives A034839 with alternating rows of A086645.

Examples

			1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
		

Crossrefs

Programs

  • Maple
    A178618 := proc(n,k)
        (1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ;
        coeftayl(%,x=0,k) ;
    end proc:
    seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
  • Mathematica
    p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
    Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]