A178618 Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.
1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0
Examples
1; 1, 2; 1, 7, 1; 1, 16, 10; 1, 30, 45, 5; 1, 50, 141, 50, 1; 1, 77, 357, 266, 28; 1, 112, 784, 1016, 266, 8; 1, 156, 1554, 3139, 1554, 156, 1; 1, 210, 2850, 8350, 6765, 1452, 55; 1, 275, 4917, 19855, 24068, 9042, 880, 11;
Programs
-
Maple
A178618 := proc(n,k) (1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
Mathematica
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}] Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
Comments