A178619 Triangle T(n,k) with the coefficient of [x^k] of the series (1-x)^(n+1)* sum_{j>=0} binomial(n + 4*j, 4*j)*x^j in row n, column k.
1, 1, 3, 1, 12, 3, 1, 31, 31, 1, 1, 65, 155, 35, 1, 120, 546, 336, 21, 1, 203, 1554, 1918, 413, 7, 1, 322, 3823, 8092, 3823, 322, 1, 1, 486, 8451, 27876, 23607, 4950, 165, 1, 705, 17205, 82885, 112035, 44803, 4455, 55, 1, 990, 32802, 220198, 440484, 291258
Offset: 0
Examples
1; 1, 3; 1, 12, 3; 1, 31, 31, 1; 1, 65, 155, 35; 1, 120, 546, 336, 21; 1, 203, 1554, 1918, 413, 7; 1, 322, 3823, 8092, 3823, 322, 1; 1, 486, 8451, 27876, 23607, 4950, 165; 1, 705, 17205, 82885, 112035, 44803, 4455, 55; 1, 990, 32802, 220198, 440484, 291258, 59950, 2882, 11;
Programs
-
Maple
A178619 := proc(n,k) (1-x)^(n+1)*add( binomial(n+4*j,4*j)*x^j,j=0..n+1) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A178619(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
Mathematica
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 4*k, 4*k]*x^k, {k, 0, Infinity}] Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
Comments