A178708 Position of start of first appearance of n consecutive 0's in the binary expansion of Pi.
1, 1, 7, 7, 96, 96, 96, 189, 902, 902, 4267, 8375, 8375, 8375, 11791, 11791, 112954, 436893, 726844, 726844, 2005750, 2005750, 2005750, 42248747, 171498580, 171498580, 171498580
Offset: 1
Examples
3 consecutive 0's are first found beginning at the 7th position in Pi's binary expansion, so the third term in this sequence is 7.
Crossrefs
Cf. A178709. - Robert G. Wilson v, Jun 09 2010
Programs
-
Mathematica
pib = ToString@ FromDigits[ RealDigits[Pi - 3, 2, 2^26][[1]]]; f[n_] := 3 + StringPosition[ pib, ToString[10^n], 1][[1, 1]]; f[1] = f[2] = 1; Array[f, 27] (* Robert G. Wilson v, Jun 09 2010 *) With[{p=RealDigits[Pi,2,1715*10^5][[1]]},Flatten[Table[SequencePosition[ p,PadRight[{},n,0],1],{n,27}],1][[All,1]]-2] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 26 2019 *)
Extensions
a(17)-a(27) from Robert G. Wilson v, Jun 09 2010
Comments