cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A368296 Square array T(n,k), n >= 2, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 8, 6, 3, 1, 5, 14, 18, 9, 3, 1, 6, 22, 44, 39, 12, 4, 1, 7, 32, 90, 135, 81, 16, 4, 1, 8, 44, 162, 363, 408, 166, 20, 5, 1, 9, 58, 266, 813, 1455, 1228, 336, 25, 5, 1, 10, 74, 408, 1599, 4068, 5824, 3688, 677, 30, 6
Offset: 2

Views

Author

Seiichi Manyama, Dec 20 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,     1, ...
  1,  2,   3,    4,    5,     6,     7, ...
  2,  4,   8,   14,   22,    32,    44, ...
  2,  6,  18,   44,   90,   162,   266, ...
  3,  9,  39,  135,  363,   813,  1599, ...
  3, 12,  81,  408, 1455,  4068,  9597, ...
  4, 16, 166, 1228, 5824, 20344, 57586, ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = (-((n+1)\2)+sum(j=1, n, j*k^(n-j)))/(k+1);

Formula

T(n,k) = T(n-2,k) + Sum_{j=0..n-2} k^j.
T(n,k) = 1/(k+1) * (-floor((n+1)/2) + Sum_{j=1..n} j*k^(n-j)).
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k+1)) = Sum_{j=0..n} floor(k^j/(k^2-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - (k-1)*T(n-2,k) - (k+1)*T(n-3,k) + k*T(n-4,k).
G.f. of column k: x^2/((1-x) * (1-k*x) * (1-x^2)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^2-1)) - floor((n+1)/2)) for k > 1.
Showing 1-1 of 1 results.