A178772 Fibonacci integers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Florian Luca, Carl Pomerance, Stephan Wagner, Fibonacci Integers, J. Number Theory 131 (2011) 440-457. (Preprint)
Programs
-
Mathematica
(* This naive program being quite slow, some terms are precomputed. *) max = Fibonacci[m = 20]; Clear[f]; Do[ f[n] = True, {n, {23, 31, 46, 62, 69, 92, 93}}]; f[] = False; Do[ f[fn = Fibonacci[n]] = True; f[fk = Fibonacci[k]] = True; If[ fn*fk < max, f[fn*fk] = True]; If[ IntegerQ[fk/fn] && fk/fk < max, f[fk/fn] = True], {n, 2, m}, {k, n, m}]; fp[] := (cnt = 0; Do[ If [f[n] && f[k], If[ n*k < max, f[n*k] = True; cnt++]; If[ IntegerQ[k/n], f[k/n] = True; cnt++]], {n, 1, max}, {k, n+1, max}]; Print[cnt, " Fibonacci integers"]; cnt); FixedPoint[fp, 0]; Reap[ Do[ If[ f[n], Sow[n]], {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Mar 01 2013 *)
Comments