A178785 a(n) is the smallest n-perfect number of the form 2^(n+1)*L, where L is an odd number with exponents <= n in its prime power factorization, and a(n)=0 if no such n-perfect number exists.
60, 6552, 222768, 288288, 87360, 49585536, 25486965504, 203558400, 683289600, 556121548800
Offset: 1
Examples
In case of n=2, we have the basis ("2-primes"): 2,3,5,7,8,11,13,... By the formula, we construct from the left m and from the right 2*m. By the condition, m begins from "2-prime" 8. From the right we have 8+1=3^2, therefore from the left we have 8*3^2 and from the right 3^2*(3^3-1)/(3-1)=3^2*13. Thus from the left it should be 8*3^2*13 and from the right 3^2*13*14. Finally, from the left we obtain m=8*3^2*13*7=6552 and from the right we have 2*m=3^2*13*14*8. By the construction, it is the smallest 2-perfect number of the required form. Thus a(2)=6552.
Links
- S. Litsyn and V. S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
Formula
m = Product_{q is in Q^(k)} q^(m_q) is a k-perfect number iff Product_{q is in Q^(k)} (q^((m_q)+1)-1)/(q-1) = 2*m.
Comments