A178796 An ascending sequence of primes a(n) such that either the sum of decimal digits of a(n) is divisible by the sum of decimal digits of a(n+1) or vice versa.
2, 11, 13, 17, 31, 53, 71, 79, 97, 101, 103, 107, 211, 233, 251, 277, 349, 367, 431, 439, 457, 503, 521, 547, 619, 673, 691, 701, 709, 727, 853, 907, 1021, 1061, 1069, 1087, 1151, 1201, 1223, 1249, 1429, 1447, 1483, 1511, 1601, 1609, 1627, 1663, 1753, 1861, 1933, 1951, 2011, 2099
Offset: 1
Examples
The sums of the digits of a(n) form the sequence d(n) = 2, 2, 4, 8, 4, 8, 8, 16, ... in which either d(n)/d(n+1) or d(n+1)/d(n) is an integer.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Different from A068807.
Programs
-
Maple
A178796 := proc(n) option remember; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do r := A007953(a)/ A007953(procname(n-1)) ; if numer(r) = 1 or denom(r) = 1 then return a; end if; a := nextprime(a) ; end do: end if; end proc: seq(A178796(n),n=1..80) ; # R. J. Mathar, Jun 28 2010
-
Mathematica
nxt[n_]:=Module[{k=NextPrime[n],tidn=Total[IntegerDigits[n]]},While[ !Divisible[ Total[ IntegerDigits[ k]],tidn] && !Divisible[ tidn,Total[ IntegerDigits[k]]],k=NextPrime[k]];k]; NestList[nxt,2,60] (* Harvey P. Dale, Aug 23 2017 *)
Extensions
Corrected by Giovanni Teofilatto, Jun 25 2010
Definition corrected, sequence extended, example added by R. J. Mathar, Jun 28 2010