A178836 Numbers n such that the period of 1/n equals the period of 1/R(n), where R(n) (A004086) is the reversal of n.
3, 7, 9, 11, 33, 77, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999, 1001, 1111, 1221, 1331, 1441, 1551
Offset: 1
Examples
3267 is in the sequence because period (1/3267) = 66 and also period(1/7623) = 66. 3927 is in the sequence because period (1/3927) = 48 and also period(1/7293) = 48.
Programs
-
Maple
with(numtheory): nn:=8000:for n from 3 to nn do: s:=0:l:=length(n):for q from 0 to l-1 do:x:=iquo(n,10^q):y:=irem(x,10):s:=s+y*10^(l-1-q): od: indic1:=0:for p from 1 to nn do:if irem(10^p, n) = 1 and gcd(n, 5) = 1 and indic1=0 then pp:=p: indic1:=1:else fi:od: indic2:=0:for p from 1 to nn do:if irem(10^p, s) = 1 and gcd(s, 5) = 1 and indic2=0 then ppp:=p:indic2:=1:else fi:od: if pp=ppp and indic1=1 and indic2=1 then print(n):else fi:od:
Comments