A178851 The number of length n sequences on {0,1,2}(ternary sequences) that contain a prime number of 2's.
0, 0, 1, 7, 32, 121, 412, 1317, 4048, 12144, 35904, 105249, 306968, 892217, 2585468, 7468532, 21500800, 61688513, 176477988, 503906221, 1438235592, 4110846808, 11789919200, 33991337521, 98657320240, 288505634480, 850146795840, 2522918119392, 7531922736384
Offset: 0
Keywords
Examples
a(3)=7 because 8,17,20,23,24,25,26 have a prime number of 2's in their ternary notation.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
P=Table[Prime[m],{m,1,200}];Range[0,20]! CoefficientList[Series[Exp[2x] Sum[x^p/p!,{p,P}],{x,0,20}],x]
Formula
E.g.f.:exp(2x)*(x^2/2!+x^3/3!+x^5/5!+...)
a(n) = Sum Binomial(n,p)*2^(n-p) where the sum is taken over the prime numbers.
Comments