A198789 Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 1, 5, 1, 2, 2, 1, 3, 6, 1, 1, 1, 2, 4, 5, 7, 1, 2, 1, 2, 1, 1, 7, 8, 1, 1, 3, 3, 2, 5, 4, 1, 9, 1, 2, 3, 2, 4, 1, 2, 7, 3, 10, 1, 1, 2, 3, 4, 4, 6, 6, 1, 5, 11, 1, 2, 2, 3, 1, 5, 3, 3, 1, 4, 7, 12, 1, 1, 1, 4, 2, 3, 5, 1, 8, 5, 7, 9, 13
Offset: 1
Examples
.n\k 1 2 3 4 5 6 7 8 9 10 ---------------------------------- .1 | 1 1 1 1 1 1 1 1 1 1 .2 | 2 1 2 1 2 1 2 1 2 1 .3 | 3 3 2 2 1 1 3 3 2 2 .4 | 4 1 1 2 2 3 2 3 3 4 .5 | 5 3 4 1 2 4 4 1 2 4 .6 | 6 5 1 5 1 4 5 3 5 2 .7 | 7 7 4 2 6 3 5 4 7 5 .8 | 8 1 7 6 3 1 4 4 8 7 .9 | 9 3 1 1 8 7 2 3 8 8 10 | 10 5 4 5 3 3 9 1 7 8
Links
Crossrefs
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[n == 1, 1, Mod[T[n-1, k]+k-1, n]+1]; Table[T[n-k+1, k], {n, 1, 13}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2023 *)
Formula
T(1,k) = 1; for n > 1: T(n,k) = ((T(n-1,k) + k - 1) mod n) + 1.
Comments