cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178923 Rectangular array T(m,k)= StirlingS2(k-1,m-1)*m! (The Coupon Collectors Problem).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 18, 0, 0, 0, 0, 2, 42, 24, 0, 0, 0, 0, 2, 90, 144, 0, 0, 0, 0, 0, 2, 186, 600, 120, 0, 0, 0, 0, 0, 2, 378, 2160, 1200, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Geoffrey Critzer, Dec 29 2010

Keywords

Comments

T(m,k) is the number of functions f:{1,2,...}->{1,2,...,m} such that the image of f[{1,2,...,k}] is {1,2,...,m} but the image of f[{1,2,...,k-1}] is not.
T(m,k)/m^k is the probability that a collector of m different objects will require exactly k trials (uniform random selection with replacement) to complete the collection.

Examples

			   1   0   0   0   0     0     0      0       0 ...
   0   2   2   2   2     2     2      2       2 ...
   0   0   6  18  42    90   186    378     762 ...
   0   0   0  24 144   600  2160   7224   23184 ...
   0   0   0   0 120  1200  7800  42000  204120 ...
   0   0   0   0   0   720 10800 100800  756000 ...
   0   0   0   0   0     0  5040 105840 1340640 ...
   0   0   0   0   0     0     0  40320 1128960 ...
   0   0   0   0   0     0     0      0  362880 ...
		

Crossrefs

Cf. A068293 (row m=3), A000142 (diagonal), A001804 (subdiagonal).

Programs

  • Maple
    A178923 := proc(m,k)
        combinat[stirling2](k-1,m-1)*m! ;
    end proc:
    seq(seq(A178923(m,d-m),m=1..d-1),d=2..15) ; # R. J. Mathar, Jan 19 2024
  • Mathematica
    Table[Table[StirlingS2[k - 1, m - 1] m!, {k, 1, 10}], {m, 1, 10}] // Grid

Formula

O.g.f. for row m: m!*x^m/Product_{i=1...m-1}1-i*x.