A178923 Rectangular array T(m,k)= StirlingS2(k-1,m-1)*m! (The Coupon Collectors Problem).
1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 18, 0, 0, 0, 0, 2, 42, 24, 0, 0, 0, 0, 2, 90, 144, 0, 0, 0, 0, 0, 2, 186, 600, 120, 0, 0, 0, 0, 0, 2, 378, 2160, 1200, 0, 0, 0, 0, 0
Offset: 1
Examples
1 0 0 0 0 0 0 0 0 ... 0 2 2 2 2 2 2 2 2 ... 0 0 6 18 42 90 186 378 762 ... 0 0 0 24 144 600 2160 7224 23184 ... 0 0 0 0 120 1200 7800 42000 204120 ... 0 0 0 0 0 720 10800 100800 756000 ... 0 0 0 0 0 0 5040 105840 1340640 ... 0 0 0 0 0 0 0 40320 1128960 ... 0 0 0 0 0 0 0 0 362880 ...
Programs
-
Maple
A178923 := proc(m,k) combinat[stirling2](k-1,m-1)*m! ; end proc: seq(seq(A178923(m,d-m),m=1..d-1),d=2..15) ; # R. J. Mathar, Jan 19 2024
-
Mathematica
Table[Table[StirlingS2[k - 1, m - 1] m!, {k, 1, 10}], {m, 1, 10}] // Grid
Formula
O.g.f. for row m: m!*x^m/Product_{i=1...m-1}1-i*x.
Comments