A178945 Expansion of x*(1-x)^2/( (1-2*x^2)*(1-2*x)^2).
1, 2, 7, 16, 42, 96, 228, 512, 1160, 2560, 5648, 12288, 26656, 57344, 122944, 262144, 557184, 1179648, 2490624, 5242880, 11010560, 23068672, 48235520, 100663296, 209717248, 436207616, 905973760, 1879048192, 3892322304, 8053063680, 16643014656
Offset: 1
Examples
(1, 4, 12, 32, 80, 192, 448, 1024,...) + ..(1, 0,..2,..0,..4,...0,...8,....0...) = ..(2, 4, 14, 32, 84, 192, 456, 1024,...). Then dividing the sum by 2 we obtain: ..(1, 2, 7, 16, 42, 96, 228,...).
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,8).
Programs
-
Mathematica
CoefficientList[Series[x (1-x)^2/((1-2x^2)(1-2x)^2),{x,0,50}],x] (* or *) LinearRecurrence[{4,-2,-8,8},{0,1,2,7},50] (* Harvey P. Dale, Dec 29 2023 *)