cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178945 Expansion of x*(1-x)^2/( (1-2*x^2)*(1-2*x)^2).

Original entry on oeis.org

1, 2, 7, 16, 42, 96, 228, 512, 1160, 2560, 5648, 12288, 26656, 57344, 122944, 262144, 557184, 1179648, 2490624, 5242880, 11010560, 23068672, 48235520, 100663296, 209717248, 436207616, 905973760, 1879048192, 3892322304, 8053063680, 16643014656
Offset: 1

Views

Author

Gary W. Adamson, Dec 30 2010

Keywords

Examples

			(1, 4, 12, 32, 80, 192, 448, 1024,...) +
..(1, 0,..2,..0,..4,...0,...8,....0...) =
..(2, 4, 14, 32, 84, 192, 456, 1024,...). Then dividing the sum by 2 we obtain:
..(1, 2, 7, 16, 42, 96, 228,...).
		

Crossrefs

Cf. A000079, A001787, A077957, column k=2 of A290222.

Programs

  • Mathematica
    CoefficientList[Series[x (1-x)^2/((1-2x^2)(1-2x)^2),{x,0,50}],x] (* or *) LinearRecurrence[{4,-2,-8,8},{0,1,2,7},50] (* Harvey P. Dale, Dec 29 2023 *)

Formula

a(2n+1) = ( A001787(2n+1)+A077957(2n))/2.
a(2n) = A001787(2n)/2.
a(n) = 2^(n-2)*n + 2^(n/2-5/2)*(1-(-1)^n).
a(n) = +4*a(n-1) -2*a(n-2) -8*a(n-3) +8*a(n-4).
G.f.: x*(S(x)^2 + S(x^2))/2 where S(x) is the g.f. for A000079.