cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178953 Indices n such that 2*prime(n) cannot be written as a sum of two distinct prime(n-k) and prime(n+k).

Original entry on oeis.org

1, 2, 4, 8, 9, 14, 15, 21, 22, 29, 30, 35, 38, 46, 48, 49, 50, 52, 53, 57, 58, 60, 61, 62, 65, 66, 90, 91, 95, 96, 97, 99, 114, 120, 121, 122, 123, 124, 125, 128, 145, 146, 149, 153, 154, 163, 176, 179, 180, 186, 187, 189, 191, 192, 197
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 02 2011

Keywords

Comments

Snapshots: a(1000) = 6922, a(2000) = 16376, a(3000) = 25951, a(4000) = 37266, a(5000) = 51926, a(6000) = 69928. - R. J. Mathar, Jan 08 2011

Crossrefs

Programs

  • Haskell
    a178953 n = a178953_list !! (n-1)
    a178953_list = filter ((== 0) . a178609) [1..]
    -- Reinhard Zumkeller, Jan 30 2014
  • Maple
    A178609 := proc(n) for k from n-1 to 0 by -1 do if ithprime(n-k)+ithprime(n+k)=2*ithprime(n) then return k; end if; end do: end proc:
    for n from 1 to 200 do if A178609(n) = 0 then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 05 2011
  • Mathematica
    A178609[n_] := For[k = n-1, k >= 0, k--, If[Prime[n-k] + Prime[n+k] == 2*Prime[n], Return[k]]]; Reap[For[n = 1, n <= 200, n++, If[A178609[n] == 0, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 13 2018, after R. J. Mathar *)

Formula

A178609(a(n))=0.