cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178958 Numbers n from A181780 that are not in A181781.

Original entry on oeis.org

15, 28, 35, 39, 51, 52, 55, 63, 66, 70, 75, 76, 87, 95, 99, 111, 112, 115, 119, 123, 124, 130, 135, 143, 147, 148, 154, 155, 159, 171, 172, 176, 183, 186, 187, 190, 195, 196, 203, 207, 208, 215, 219, 232, 235, 238, 244, 246, 255, 267, 268, 275, 276, 279, 280, 286, 287, 291, 292, 295, 299
Offset: 1

Views

Author

Karsten Meyer, Dec 31 2010

Keywords

Comments

Numbers that are Fermat pseudoprimes to some base a (2<=a<=n-2) not Euler pseudoprimes to any base a (2<=a<=n-2).

Examples

			4^(15-1) == 1 (mod 15), but 4^((15-1)/2) == 4 (mod 15)
		

Crossrefs

Programs

  • PARI
    fsp(n)=
    { /* whether n is Fermat pseudoprime to any base a where 2<=a<=n-2 */
        for (a=2,n-2,
            if ( gcd(a,n)!=1, next() );
            if ( (Mod(a,n))^(n-1)==+1, return(1) )
        );
        return(0);
    }
    esp(n)=
    { /* whether n is Euler pseudoprime to any base a where 2<=a<=n-2 */
        local(w);
        if ( n%2==0, return(0) );
        for (a=2,n-2,
            if ( gcd(a,n)!=1, next() );
            w = abs(component((Mod(a,n))^((n-1)/2),2));
            if ( (w==1) || (w==n-1), return(1) )
        );
        return(0);
    }
    for(n=3,300, if(isprime(n),next()); if( fsp(n) && (!esp(n)) , print1(n,", ") ); );