cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178964 E.g.f.: (1+sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2))+sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056, 33661, 349504, 2856944, 14873104, 60376809, 819786496, 8615785216, 56814228736, 288294050521, 4835447317504, 62112775514624, 495812444583424, 3019098162602349, 60283564499562496, 915153344223809536, 8575634961418940416, 60921822444067346581, 1411083019275488149504, 24716980773496372066304
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2010

Keywords

Comments

According to Mendes and Remmel, p. 56, this is the e.g.f. for 4-alternating permutations.

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), A181936 (m=5).
Cf. A181937.

Programs

  • Maple
    A178964_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 4 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A178964_list(31); # Peter Luschny, Apr 02 2012
    # Alternatively, using a bivariate exponential generating function:
    A178964 := proc(n) local g, p, q;
    g := (x,z) -> 2*exp(x*z)/(cosh(z)+cos(z));
    p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
    q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
    (-1)^binomial(n,4)*p(n,q(n,4)) end:
    seq(A178964(i),i=0..30); # Peter Luschny, Jun 06 2012
  • Mathematica
    max = 30; s = Series[Sec[x]*Sech[x]+Tan[x]*(Sqrt[2]+Tanh[x]) /. x -> x/Sqrt[2], {x, 0, max+1}]; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2014 *)
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
         Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}],
         Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
  • PARI
    x='x+O('x^30);round(Vec(serlaplace((1+sqrt(2)*sin(x/sqrt(2))*cosh( x/sqrt(2)) + sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))))))
  • Sage
    # Function A(m,n) defined in A181936.
    A178964 = lambda n: (-1)^int(is_odd(n//4))*A(4,n)
    print([A178964(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
    

Formula

a(n) ~ n! * 2^(n/2+1) * (-sqrt(2)*(-1+(-1)^n) - 2*cos(n*Pi/2)*(sinh(Pi/2)-1)/cosh(Pi/2) + (1+(-1)^n)*(1 + sinh(Pi/2))/cosh(Pi/2)) / Pi^(n+1). - Vaclav Kotesovec, Sep 09 2014