cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178967 Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 01 2011

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]

Formula

a(n) = 1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*cos(Pi*n/2) +(2*n+15)*sin(Pi*n/2) +1/81*(96*n^3-1328*n^2+4744*n-2248)*cos(4*Pi*n/3) -1/243*(120*n^2-1496*n+5224)*sqrt(3)*sin(4*Pi*n/3) +8/25*((5-sqrt(5))*n+2*sqrt(5)-8)*cos(4*Pi*n/5) +8/25*((5+sqrt(5))*n-2*sqrt(5)-8)*cos(8*Pi*n/5) +8/25*sqrt(50-22*sqrt(5))*sin(4*Pi*n/5) -8/25*sqrt(50+22*sqrt(5))*sin(8*Pi*n/5), n>=10.
a(n) = n^10/120 - 5*n^9/18 + 253*n^8/72 - 689*n^7/45 - 34307*n^6/360 + 57001*n^5/36 - 55000657*n^4/6480 + 60118543*n^3/3240 + 34387307*n^2/3240 - 155720509*n/1296 + 142960 + (n^5/2 - 143*n^4/12 + 316*n^3/3 - 4711*n^2/12 + 5123*n/12 + 2309/8)*floor[n/2] + (32*n^3/9 - 1328*n^2/27 + 4744*n/27 - 2248/27)*floor[n/3] + (16*n^3/9 - 724*n^2/27 + 1040*n/9 - 3736/27)*floor[(n+1)/3] + (33*n - 5)*floor[n/4] + (25*n - 65)*floor[(n+1)/4] + (32*n/5 - 48/5)*floor[n/5] + (24*n/5 - 64/5)*floor[(n+1)/5] + (16*n/5 - 56/5)*floor[(n+2)/5] + (8*n/5 - 32/5)*floor[(n+3)/5], n>=10.
G.f.: (2*x^7*(-124 - 3784*x - 44667*x^2 - 310723*x^3 - 1509124*x^4 - 5621180*x^5 - 16954312*x^6 - 42976662*x^7 - 93896850*x^8 - 180088868*x^9 - 307206501*x^10 - 470650261*x^11 - 652017897*x^12 - 820670989*x^13 - 941074901*x^14 - 984212615*x^15 - 938015444*x^16 - 812413066*x^17 - 635893628*x^18 - 445615046*x^19 - 275100707*x^20 - 145295581*x^21 - 61597137*x^22 - 17181649*x^23 + 704005*x^24 + 4589289*x^25 + 3324134*x^26 + 1424132*x^27 + 316332*x^28 - 58210*x^29 - 91844*x^30 - 47684*x^31 - 15863*x^32 - 3119*x^33 + 490*x^34 + 982*x^35 + 632*x^36 + 260*x^37 + 126*x^38 + 54*x^39))/((-1+x)^11*(1+x)^6*(1+x^2)^2*(1+x+x^2)^4*(1+x+x^2+x^3+x^4)^2).
Recurrence: a(n) = a(n-37) + a(n-36) - 3a(n-35) - 7a(n-34) - 3a(n-33) + 11a(n-32) + 21a(n-31) + 13a(n-30) - 13a(n-29) - 41a(n-28) - 44a(n-27) - 8a(n-26) + 49a(n-25) + 81a(n-24) + 57a(n-23) - 15a(n-22) - 88a(n-21) - 106a(n-20) - 48a(n-19) + 48a(n-18) + 106a(n-17) + 88a(n-16) + 15a(n-15) - 57a(n-14) - 81a(n-13) - 49a(n-12) + 8a(n-11) + 44a(n-10) + 41a(n-9) + 13a(n-8) - 13a(n-7) - 21a(n-6) - 11a(n-5) + 3a(n-4) + 7a(n-3) + 3a(n-2) - a(n-1), n>=47.