A225553
Longest checkmate in king and amazon versus king endgame on an n X n chessboard.
Original entry on oeis.org
0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3
Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
- V. Kotesovec, King and Two Generalised Knights against King, ICGA Journal, Vol. 24, No. 2, pp. 105-107 (2001)
- V. Kotesovec, Fairy chess endings on an n x n chessboard, Electronic edition of chess booklets by Vaclav Kotesovec, vol. 8, p.364 (2013), p. 544 (second edition, 2017).
A178975
Number of ways to place 5 nonattacking amazons (superqueens) on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 640, 7290, 123640, 640574, 3869280, 12950132, 47022360, 123467040, 340840960, 759697190, 1758672648, 3494388306, 7150739360, 13041285516, 24354594440, 41566378136, 72345297024, 117101090250, 192694385416, 298703838186, 469581881888, 702148696580, 1062719841960, 1541332566284, 2259300468736, 3192255589842, 4552716843720, 6288527141890, 8758324830240, 11859789616944, 16178716174856, 21527161542900, 28834708173440
Offset: 1
-
CoefficientList[Series[- 2 x^7 * (1176 x^64 + 5556 x^63 + 15132 x^62 + 28428 x^61 + 39340 x^60 + 30066 x^59 - 16046 x^58 - 97562 x^57 - 191158 x^56 - 227584 x^55 - 150082 x^54 + 56017 x^53 + 289119 x^52 + 339896 x^51 + 45336 x^50 - 611255 x^49 - 1380704 x^48 - 2278261 x^47 - 3764650 x^46 - 7542849 x^45 - 7704482 x^44 + 18495516 x^43 + 165924351 x^42 + 637466559 x^41 + 1903273538 x^40 + 4724140916 x^39 + 10422040024 x^38 + 20690172375 x^37 + 37875420877 x^36 + 64238796480 x^35 + 102190978070 x^34 + 152823563437 x^33 + 216401077492 x^32 + 290462738417 x^31 + 371272897408 x^30 + 452086367452 x^29 + 526060962825 x^28 + 584865148004 x^27 + 622627590675 x^26 + 634259897550 x^25 + 619201117902 x^24 + 578669435625 x^23 + 518210895306 x^22 + 443951015905 x^21 + 364069798686 x^20 + 285127462600 x^19 + 213313173667 x^18 + 151952471981 x^17 + 103062047860 x^16 + 66251579160 x^15 + 40354587182 x^14 + 23135311545 x^13 + 12479773177 x^12 + 6269223018 x^11 + 2933204824 x^10 + 1256492269 x^9 + 493760966 x^8 + 172473531 x^7 + 54013568 x^6 + 14176791 x^5 + 3222186 x^4 + 525572 x^3 + 74355 x^2 + 4605 x + 320) / ((x - 1)^11 (x + 1)^9 (x^2 + 1)^5 (x^2 - x + 1)^3 (x^2 + x + 1)^5 (x^4 + x^3 + x^2 + x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)
Showing 1-2 of 2 results.
Comments