A178973 Number of ways to place 3 nonattacking amazons (superqueens) on an n X n toroidal board.
0, 0, 0, 0, 0, 0, 588, 3328, 9720, 27600, 59048, 124992, 226460, 408464, 666900, 1086464, 1650768, 2505168, 3610000, 5198400, 7191828, 9945232, 13320220, 17835264, 23265000, 30341584, 38718648, 49401408, 61880780, 77504400, 95550308, 117788672, 143225280, 174144464, 209210400, 251325504, 298732228, 355068048, 418062060, 492217600
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
Programs
-
Mathematica
CoefficientList[Series[- 4 x^6 (36 x^11 - 47 x^10 - 178 x^9 + 228 x^8 + 354 x^7 - 419 x^6 - 356 x^5 + 297 x^4 + 182 x^3 + 178 x^2 + 538 x + 147) / ((x - 1)^7 (x + 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
Formula
a(n) = 1/3*n^2*(n^4/2 -6*n^3 +61*n^2/4 +42*n -285/2 +(3*n^2/4 -6*n +21/2)*(-1)^n), n>=7.
G.f.: -4*x^7 * (36*x^11 -47*x^10 -178*x^9 +228*x^8 +354*x^7 -419*x^6 -356*x^5 +297*x^4 +182*x^3 +178*x^2 +538*x +147)/((x-1)^7*(x+1)^5).
Comments