cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178988 Decimal expansion of volume of golden tetrahedron.

Original entry on oeis.org

7, 5, 7, 5, 5, 2, 2, 1, 2, 8, 1, 0, 1, 1, 4, 9, 2, 9, 7, 6, 9, 2, 0, 8, 0, 5, 6, 3, 0, 6, 4, 4, 5, 8, 0, 9, 2, 7, 0, 3, 7, 5, 3, 2, 6, 1, 9, 3, 9, 2, 9, 2, 1, 4, 7, 5, 9, 1, 2, 9, 9, 2, 1, 3, 9, 5, 2, 4, 5, 6, 5, 1, 0, 6, 0, 2, 5, 9, 4, 9, 6, 8, 8, 5, 3, 3, 6, 9, 9, 2, 8, 4, 4, 4, 9, 8, 4, 2, 5, 6, 9
Offset: 2

Views

Author

Jonathan Vos Post, Jan 03 2011

Keywords

Comments

Volume of tetrahedron with edges 1, phi, phi^2, phi^3, phi^4, phi^5 where phi is the golden ratio (1+sqrt(5))/2.
A152149 records more recent developments about side-golden and angle-golden triangles, both of which, like the golden rectangle, have generalizations that match continued fractions. There is a unique triangle which is both side-golden and angle-golden. Is there a comparable tetrahedron? - Clark Kimberling, Mar 31 2011

Examples

			75.7552212810...
		

References

  • Clark Kimberling, "A New Kind of Golden Triangle." In Applications of Fibonacci Numbers: Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications,' Wake Forest University (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 171-176, 1991.
  • Theoni Pappas, "The Pentagon, the Pentagram & the Golden Triangle." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 188-189, 1989.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[275465/96 + 369575*Sqrt[5]/288], 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    sqrt(275465/96 + (369575*sqrt(5))/288) \\ Charles R Greathouse IV, May 27 2016

Formula

Equals sqrt(275465/96 + (369575*sqrt(5))/288).
The minimal polynomial is 20736*x^4 - 119000880*x^2 + 73225. - Joerg Arndt, Jul 25 2021

Extensions

a(101) corrected by Georg Fischer, Jul 25 2021