A178988 Decimal expansion of volume of golden tetrahedron.
7, 5, 7, 5, 5, 2, 2, 1, 2, 8, 1, 0, 1, 1, 4, 9, 2, 9, 7, 6, 9, 2, 0, 8, 0, 5, 6, 3, 0, 6, 4, 4, 5, 8, 0, 9, 2, 7, 0, 3, 7, 5, 3, 2, 6, 1, 9, 3, 9, 2, 9, 2, 1, 4, 7, 5, 9, 1, 2, 9, 9, 2, 1, 3, 9, 5, 2, 4, 5, 6, 5, 1, 0, 6, 0, 2, 5, 9, 4, 9, 6, 8, 8, 5, 3, 3, 6, 9, 9, 2, 8, 4, 4, 4, 9, 8, 4, 2, 5, 6, 9
Offset: 2
Examples
75.7552212810...
References
- Clark Kimberling, "A New Kind of Golden Triangle." In Applications of Fibonacci Numbers: Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications,' Wake Forest University (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 171-176, 1991.
- Theoni Pappas, "The Pentagon, the Pentagram & the Golden Triangle." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 188-189, 1989.
Links
- Marjorie Bicknell and Verner E. Hoggatt Jr., Golden Triangles, Rectangles, and Cuboids, Fib. Quart. 7, 73-91, 1969.
- Frank M. Jackson and Eric W. Weisstein, Tetrahedron.
- Clark Kimberling, A New Kind of Golden Triangle, In: Bergum G.E., Philippou A.N., Horadam A.F. (eds), Applications of Fibonacci Numbers. Springer, Dordrecht, pp. 171-176, 1991.
- Robert Schoen, The Fibonacci Sequence in Successive Partitions of a Golden Triangle, Fib. Quart. 20, 159-163, 1982.
- Eric W. Weisstein, Golden Triangle.
Crossrefs
Programs
-
Mathematica
RealDigits[Sqrt[275465/96 + 369575*Sqrt[5]/288], 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
-
PARI
sqrt(275465/96 + (369575*sqrt(5))/288) \\ Charles R Greathouse IV, May 27 2016
Formula
Equals sqrt(275465/96 + (369575*sqrt(5))/288).
The minimal polynomial is 20736*x^4 - 119000880*x^2 + 73225. - Joerg Arndt, Jul 25 2021
Extensions
a(101) corrected by Georg Fischer, Jul 25 2021
Comments