A179010 The number of isomorphism classes of commutative quandles of order n.
1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 7
Offset: 1
Links
- V. D. Belousov, The structure of distributive quasigroups, (Russian) Mat. Sb. (N.S.) 50 (92) 1960 267-298.
- George Glauberman, On Loops of Odd Order II, Journal of Algebra 8 (1968), 393-414.
- David Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37-65
- Gábor P. Nagy and Petr Vojtchovský, The Moufang loops of order 64 and 81, Journal of Symbolic Computation, Volume 42 Issue 9, September, 2007.
- Wikipedia, Racks and quandles
Extensions
Results due to Belousov, Nagy and Vojtchovský, and Glauberman added, and sequence extended to n = 81, by W. Edwin Clark, Jan 25 2011
In Comments section, "Every commutative quandle" replaced with "Every finite commutative quandle" by W. Edwin Clark, Mar 09 2014
Comments