A179018 Partial sums of ceiling(Fibonacci(n)/2).
0, 1, 2, 3, 5, 8, 12, 19, 30, 47, 75, 120, 192, 309, 498, 803, 1297, 2096, 3388, 5479, 8862, 14335, 23191, 37520, 60704, 98217, 158914, 257123, 416029, 673144, 1089164
Offset: 0
Examples
a(4) = 0 + 1 + 1 + 1 + 2 = 5.
Links
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-2,0,1).
Crossrefs
Cf. A173173.
Programs
-
Maple
seq(ceil(Fibonacci(n+2)/2+n/3-1/2),n=0..30)
-
PARI
a(n)=(3*fibonacci(n+2)+2*n-1)\6 \\ Charles R Greathouse IV, Nov 02 2015
Formula
a(n) = round(Fibonacci(n+2)/2 + (n-1)/3).
a(n) = round(Fibonacci(n+2)/2 + n/3 - 1/2).
a(n) = floor(Fibonacci(n+2)/2 + n/3 - 1/6).
a(n) = ceiling(Fibonacci(n+2)/2 + n/3 - 1/2).
a(n) = a(n-3) + Fibonacci(n)+1, n > 2.
a(n) = 2*a(n-1) - 2*a(n-4) + a(n-6), n > 5.
G.f.: x*(x^3+x^2-1) / ( (x^2+x+1)*(x^2+x-1)*(x-1)^2 ).
Comments