A179023 a(n) = n(F(n+2) - 1) where F(n) is defined by A000045.
0, 1, 4, 12, 28, 60, 120, 231, 432, 792, 1430, 2552, 4512, 7917, 13804, 23940, 41328, 71060, 121752, 207955, 354200, 601776, 1020074, 1725552, 2913408, 4910425, 8263060, 13884156, 23297092, 39041772, 65349240, 109261887, 182492352
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 4, 0, -1).
Programs
-
Mathematica
f[n_] := n(Fibonacci[n + 2] - 1); Array[f, 33, 0] (* Robert G. Wilson v, Jun 27 2010 *)
Formula
a(0)=0, a(1)=1 and for n>1, a(n) = a(n-1) + F(n+1) +nF(n) -1.
a(n)= +4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6). = -n + A023607(n+1) - A000045(n+2). G.f.: -x*(-1+2*x^3) / ( (x-1)^2*(x^2+x-1)^2 ). - R. J. Mathar, Sep 15 2010
Extensions
More terms from Robert G. Wilson v, Jun 27 2010
Comments