cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179041 Partial sums of ceiling(Fibonacci(n)/3).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 21, 33, 52, 82, 130, 208, 334, 538, 867, 1400, 2262, 3656, 5911, 9560, 15464, 25017, 40473, 65482, 105947, 171420, 277357, 448767, 726114, 1174871, 1900974, 3075834, 4976797, 8052619
Offset: 0

Views

Author

Mircea Merca, Jan 04 2011

Keywords

Examples

			a(9) = 0 + 1 + 1 + 1 + 1 + 2 + 3 + 5 + 7 + 12 = 33.
		

Programs

  • Maple
    A179041 := proc(n) add( ceil(combinat[fibonacci](i)/3),i=0..n) ; end proc:

Formula

a(n) = round(Fibonacci(n+2)/3 + 3*n/8 - 1/24).
a(n) = floor(Fibonacci(n+2)/3 + 3*n/8 + 1/4).
a(n) = ceiling(Fibonacci(n+2)/3 + 3*n/8 - 1/3).
a(n) = a(n-8) + Fibonacci(n-1) + Fibonacci(n-3) + 3, n > 7.
a(n) = 2*a(n-1) - a(n-3) + a(n-8) - 2*a(n-9) + a(n-11), n > 10.
G.f.: (x^9 + x^8 + x^4 + x^3 - x)/((x+1)*(x^2+1)*(x^2+x-1)*(x-1)^2*(x^4+1)).
a(n) = -1/16 + 3*n/8 - (-1)^n/16 + Fibonacci(n+2)/3 - A057077(n)/8 + (-1)^floor((n-1)/4)*A093148(n+1)/12. - R. J. Mathar, Jan 08 2011