cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179054 a(n) = (1^k + 2^k + ... + n^k) modulo (n+2), where k is any odd integer greater than or equal to 3.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 10, 1, 1, 1, 12, 1, 1, 1, 14, 1, 1, 1, 16, 1, 1, 1, 18, 1, 1, 1, 20, 1, 1, 1, 22, 1, 1, 1, 24, 1, 1, 1, 26, 1, 1, 1, 28, 1, 1, 1, 30, 1, 1, 1, 32, 1, 1, 1, 34, 1, 1, 1, 36, 1, 1, 1, 38, 1, 1, 1, 40, 1, 1, 1, 42, 1, 1, 1, 44, 1, 1, 1, 46, 1, 1, 1, 48, 1, 1, 1
Offset: 1

Views

Author

Nick Hobson, Jun 27 2010

Keywords

Examples

			a(4) = (1^3 + 2^3 + 3^3 + 4^3) mod 6 = 100 mod 6 = 4.
		

Programs

  • Magma
    &cat [[1,1,1,2*n]: n in [1..30]]; // Vincenzo Librandi, Dec 05 2016
  • Maple
    seq(op([1,1,1,2*k]),k=2..50); # Robert Israel, Dec 05 2016
  • Mathematica
    f[n_] := Mod[n^2(n + 1)^2/4, n + 2]; Array[f, 100] (* Robert G. Wilson v, Jul 01 2010 *)
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {1, 1, 1, 4, 1, 1, 1, 6}, 100] (* Vincenzo Librandi, Dec 05 2016 *)
  • PARI
    s=0; for(n=1, 100, s+=n^3; print(s%(n+2)))
    

Formula

a(n) = 2m+2, if n = 4m for some integer m; a(n) = 1 otherwise.
G.f.: (x+x^2+x^3+4*x^4-x^5-x^6-x^7-2*x^8)/(1-2*x^4+x^8). - Robert Israel, Dec 05 2016

Extensions

Typo in name of sequence corrected and formula added by Nick Hobson, Jun 27 2010
More terms from Robert G. Wilson v, Jul 01 2010