A179087 Triangle T(n,k) read by rows: the real part of the coefficient [x^k] of (1-x)^(n+1) * Sum_{s>=0} ((2*s + 1 + 2*i)^n)*x^s, where i is the imaginary unit.
1, 1, 1, -3, 14, -3, -11, 35, 35, -11, -7, -84, 566, -84, -7, 41, -843, 2722, 2722, -843, 41, 117, -2854, 763, 50028, 763, -2854, 117, 29, -4681, -80211, 407423, 407423, -80211, -4681, 29, -527, 4504, -720740, 1560616, 8634214, 1560616, -720740, 4504, -527, -1199, 68393, -4275340, -6925948, 104031374, 104031374, -6925948, -4275340, 68393, -1199, 237, 338918, -19903639, -195090616, 799237802, 2546725796, 799237802, -195090616
Offset: 0
Examples
Triangle begins 1; 1, 1; -3, 14, -3; -11, 35, 35, -11; -7, -84, 566, -84, -7; 41, -843, 2722, 2722, -843, 41; 117, -2854, 763, 50028, 763, -2854, 117; 29, -4681, -80211, 407423, 407423, -80211, -4681, 29;
Programs
-
Maple
A179087 := proc(n,k) (1-x)^(n+1)*add( (2*s+1+2*I)^n*x^s,s=0..k) ; expand(%) ; coeftayl(%,x=0,k) ; Re(%) ; end proc: # R. J. Mathar, Oct 06 2011
Extensions
Sequence replaced with one that is more likely to occur in practice by R. J. Mathar, Oct 06 2011