A179119 Decimal expansion of Sum_{p prime} 1/(p*(p+1)).
3, 3, 0, 2, 2, 9, 9, 2, 6, 2, 6, 4, 2, 0, 3, 2, 4, 1, 0, 1, 5, 0, 9, 4, 5, 8, 8, 0, 8, 6, 7, 4, 4, 7, 6, 0, 6, 4, 4, 2, 5, 9, 4, 1, 9, 4, 7, 4, 0, 7, 0, 4, 5, 6, 1, 5, 0, 2, 2, 8, 6, 0, 0, 7, 6, 2, 4, 2, 2, 1, 6, 6, 7, 9, 2, 9, 0, 7, 9, 4, 4, 3, 2, 1, 7, 0, 3, 2, 0, 7, 5, 1, 3, 2, 3, 5, 1, 0, 3, 1, 2
Offset: 0
Examples
0.33022992626420324101.. = 1/(2*3) +1/(3*4) +1/(5*6) + 1/(7*8) +... = sum_{n>=1} 1/ (A000040(n)*A008864(n)).
Links
- Jason Kimberley, Table of n, a(n) for n = 0..683
- Index to constants which are prime zeta sums {1,0,1}
Crossrefs
Programs
-
Magma
R:=RealField(103); ExhaustSum := function( k_min, term : IZ := func
) c:=R!0; k:=k_min; repeat t:=term(k); c+:=t; k+:=1; until IZ(t,k-1); return c; end function; RealField(101)! ExhaustSum(2, func : IZ:=func )>); // Jason Kimberley, Jan 20 2017 -
Maple
interface(quiet=true): read("transforms") ; Digits := 300 ; ZetaM := proc(s,M) local v,p; v := Zeta(s) ; p := 2; while p <= M do v := v*(1-1/p^s) ; p := nextprime(p) ; end do: v ; end proc: Hurw := proc(a) local T,p,x,L,i,Le,pre,preT,v,t,M ; T := 40 ; preT := 0.0 ; while true do 1/p/(p+a) ; subs(p=1/x,%) ; exp(%) ; t := taylor(%,x=0,T) ; L := [] ; for i from 1 to T-1 do L := [op(L),evalf(coeftayl(t,x=0,i))] ; end do: Le := EULERi(L) ; M := -a ; v := 1.0 ; pre := 0.0 ; for i from 2 to nops(Le) do pre := log(v) ; v := v*evalf(ZetaM(i,M))^op(i,Le) ; v := evalf(v) ; end do: pre := (log(v)+pre)/2. ; printf("%.105f\n",%) ; if abs(1.0-preT/pre) < 10^(-Digits/3) then break; end if; preT := pre ; T := T+10 ; end do: pre ; end proc: A179119 := proc() Hurw(1) ; end proc: A179119() ;
-
Mathematica
digits = 101; S = NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 5]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
-
PARI
eps()=2.>>bitprecision(1.) primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s)))) sumalt(k=2,(-1)^k*primezeta(k)) \\ Charles R Greathouse IV, Aug 03 2016
-
PARI
sumeulerrat(1/(p*(p+1))) \\ Amiram Eldar, Mar 18 2021
Formula
P(2) - P(3) + P(4) - P(5) + ..., where P is the prime zeta function. - Charles R Greathouse IV, Aug 03 2016