cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179119 Decimal expansion of Sum_{p prime} 1/(p*(p+1)).

Original entry on oeis.org

3, 3, 0, 2, 2, 9, 9, 2, 6, 2, 6, 4, 2, 0, 3, 2, 4, 1, 0, 1, 5, 0, 9, 4, 5, 8, 8, 0, 8, 6, 7, 4, 4, 7, 6, 0, 6, 4, 4, 2, 5, 9, 4, 1, 9, 4, 7, 4, 0, 7, 0, 4, 5, 6, 1, 5, 0, 2, 2, 8, 6, 0, 0, 7, 6, 2, 4, 2, 2, 1, 6, 6, 7, 9, 2, 9, 0, 7, 9, 4, 4, 3, 2, 1, 7, 0, 3, 2, 0, 7, 5, 1, 3, 2, 3, 5, 1, 0, 3, 1, 2
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Examples

			0.33022992626420324101.. = 1/(2*3) +1/(3*4) +1/(5*6) + 1/(7*8) +... = sum_{n>=1} 1/ (A000040(n)*A008864(n)).
		

Crossrefs

Cf. A136141 for 1/(p(p-1)), A085548 for 1/p^2.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A307379.

Programs

  • Magma
    R:=RealField(103);
    ExhaustSum :=
      function(
        k_min, term
      : IZ := func)
        c:=R!0; k:=k_min;
        repeat
          t:=term(k); c+:=t; k+:=1;
        until IZ(t,k-1);
        return c;
      end function;
    RealField(101)!
    ExhaustSum(2,
      func
        : IZ:=func
        )>);
    // Jason Kimberley, Jan 20 2017
  • Maple
    interface(quiet=true):
    read("transforms") ;
    Digits := 300 ;
    ZetaM := proc(s,M)
        local v,p;
        v := Zeta(s) ;
        p := 2;
        while p <= M do
            v := v*(1-1/p^s) ;
            p := nextprime(p) ;
        end do:
        v ;
    end proc:
    Hurw := proc(a)
            local T,p,x,L,i,Le,pre,preT,v,t,M ;
        T := 40 ;
        preT := 0.0 ;
        while true do
                1/p/(p+a) ;
                subs(p=1/x,%) ;
                exp(%) ;
                t := taylor(%,x=0,T) ;
                L := [] ;
                for i from 1 to T-1 do
                        L := [op(L),evalf(coeftayl(t,x=0,i))] ;
                end do:
                Le := EULERi(L) ;
            M := -a ;
                v := 1.0 ;
                pre := 0.0 ;
                for i from 2 to nops(Le) do
                        pre := log(v) ;
                        v := v*evalf(ZetaM(i,M))^op(i,Le) ;
                        v := evalf(v) ;
                end do:
            pre := (log(v)+pre)/2. ;
            printf("%.105f\n",%) ;
            if abs(1.0-preT/pre)  < 10^(-Digits/3) then
                break;
            end if;
            preT := pre ;
            T := T+10 ;
        end do:
            pre ;
    end proc:
    A179119 := proc()
        Hurw(1) ;
    end proc:
    A179119() ;
  • Mathematica
    digits = 101; S = NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 5]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2,(-1)^k*primezeta(k)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1))) \\ Amiram Eldar, Mar 18 2021
    

Formula

P(2) - P(3) + P(4) - P(5) + ..., where P is the prime zeta function. - Charles R Greathouse IV, Aug 03 2016