cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179123 Place a(n) red and b(n) blue balls in an urn; draw 6 balls without replacement; Probability(6 red balls)=Probability(4 red and 2 blue balls); binomial(a(n),6)=binomial(a(n),4)*binomial(b(n),2).

Original entry on oeis.org

5, 10, 14, 49, 80, 355, 599, 2764, 4685, 21730, 36854, 171049, 290120, 1346635, 2284079, 10602004, 17982485, 83469370, 141575774, 657152929, 1114623680, 5173754035, 8775413639, 40732879324, 69088685405, 320689280530, 543934069574, 2524781364889
Offset: 1

Views

Author

Paul Weisenhorn, Jun 30 2010

Keywords

Examples

			for n=4 a(4)=49; b(4)=12; binomial(49,6)=1383816;
binomial(49,4)*binomial(12,2)= 211876*66=1383816;
		

Crossrefs

Cf. A105045 (sequence b(n)).

Programs

  • Maple
    n:=1: for m from 1 to 2000 do w:=sqrt(1+60*m*(m-1)):
    if (w=floor(w)) then a(n)=(9+w)/2: b(n):=m: inc(n): end if: end do:

Formula

a(n+4) = 8*a(n+2)-a(n)-27; r15=sqrt(15).
a(n) = ((1+r15)*(4+r15)^((n-1)/2)+(1-r15)*(4-r15)^((n-1)/2)+18)/4 for n odd;
a(n) = ((11+3*r15)*(4+r15)^((n-2)/2)+(11-3*r15)*(4-r15)^((n-2)/2)+18)/4 for n even.
a(n) = a(n-1)+8*a(n-2)-8*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(4*x^4-5*x^3-36*x^2+5*x+5) / ((x-1)*(x^4-8*x^2+1)). - Colin Barker, Jan 01 2013

Extensions

More terms from Colin Barker, Jan 01 2013