cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179132 Denominators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 3, 14, 36, 47, 246, 644, 843, 4414, 11556, 15127, 79206, 207364, 271443, 1421294, 3720996, 4870847, 25504086, 66770564, 87403803, 457652254, 1198149156, 1568397607, 8212236486, 21499914244, 28143753123, 147362604494
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A179131.

Crossrefs

Cf. A128052 and A179133.

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    LinearRecurrence[{0,0,18,0,0,-1},{1,3,14,36,47,246,644},30] (* Harvey P. Dale, Jun 11 2022 *)

Formula

a(n) = A069705(n-1)*A128052(n) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(3*x^6+6*x^5+7*x^4-18*x^3-14*x^2-3*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013