cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179167 Place a(n) red and b(n) blue balls in an urn; draw 3 balls without replacement; Probability(3 red balls) = Probability(1 red and 2 blue balls); binomial(a(n),3) = binomial(a(n),1)*binomial(b(n),2).

Original entry on oeis.org

3, 4, 11, 37, 134, 496, 1847, 6889, 25706, 95932, 358019, 1336141, 4986542, 18610024, 69453551, 259204177, 967363154, 3610248436, 13473630587, 50284273909, 187663465046, 700369586272, 2613814880039, 9754889933881
Offset: 1

Views

Author

Paul Weisenhorn, Jun 30 2010

Keywords

Examples

			For n=4, a(4)=37; b(4)=21; binomial(37,3) = 7770;
binomial(37,1)*binomial(21,2) = 37*210 = 7770.
		

Crossrefs

b(n)=A101265(n).

Programs

  • Maple
    r:=sqrt(3): for n from 1 to 40 do
    a(n):=(6+(1+r)*(2+r)^(n-1)+(1-r)*(2-r)^(n-1))/4: end do:

Formula

a(n+2) = 4*a(n+1) - a(n) - 3;
a(n+3) = 5*(a(n+2) - a(n+1)) + a(n); r=sqrt(3);
a(n) = (6 + (1+r)*(2+r)^(n-1) + (1-r)*(2-r)^(n-1))/4;
a(n) = ceiling((6 + (1+r)*(2+r)^(n-1))/4).
From Colin Barker, Dec 11 2012: (Start)
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 4.
G.f.: x*(x^3-6*x^2+11*x-3) / ((x-1)*(x^2-4*x+1)). (End)