A179180 Partial sums of A007895.
0, 1, 2, 3, 5, 6, 8, 10, 11, 13, 15, 17, 20, 21, 23, 25, 27, 30, 32, 35, 38, 39, 41, 43, 45, 48, 50, 53, 56, 58, 61, 64, 67, 71, 72, 74, 76, 78, 81, 83, 86, 89, 91, 94, 97, 100, 104, 106, 109, 112, 115, 119, 122, 126, 130, 131, 133, 135, 137, 140, 142, 145
Offset: 0
Keywords
Examples
For n = 6, a(n) = 1+1+1+2+1+2 = 8.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- Christian Ballot, On Zeckendorf and Base b Digit Sums, Fibonacci Quarterly, Vol. 51, No. 4 (2013), pp. 319-325.
- Vaclav Kotesovec, Graph - the asymptotic ratio
Programs
-
Mathematica
s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]]; t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]]; v[n_] := Sum[t2[[k]], {k, 1, n}]; v1 = Table[v[n], {n, 1, z}] (* Peter J. C. Moses, Oct 18 2012 *) DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1] // Accumulate (* Jean-François Alcover, Jan 25 2018 *)
Formula
a(n) ~ c * n * log(n), where c = (phi-1)/(sqrt(5)*log(phi)) = 0.574369... and phi is the golden ratio (A001622) (Ballot, 2013). - Amiram Eldar, Dec 09 2021
Extensions
Corrected term a(17); the working list of the terms were not in order. Walt Rorie-Baety, Jun 30 2010
Extended by Clark Kimberling, Oct 23 2012
Comments